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Abstract. We assume that the atomic positions in a quasicrystal form a repetitive Delone set with
a finite Bravais module. Therefore we investigate the dynamical system (�, τ,R

d ) arising from the
orbit closure of such a set. Using the cut-and-project method we construct a Poincaré section for
the dynamical system (�, τ,R

d ) such that the action of R
d reduces to an action of Z

d . We obtain d

commuting homeomorphisms ϕ1, . . . , ϕd on a Cantor set X. In one dimension we relate (X, ϕ) to
the support of the invariant measure of a homeomorphism on the circle (Denjoy homeomorphism).
In this way we see that the K-groups with additional structure of the corresponding C∗-algebra
classify these point sets and equivalences between different repetitive Delone sets are established.
The discussion includes point sets with an acceptance domain given by a countable union of intervals
or with a fractal atomic surface.

1. Introduction

Many successful concepts to describe transport properties of condensed matter systems are
based on the fact that the underlying physical system can be seen as perfectly periodic.
Although physicists have treated deviations as perturbations in many physical situations, there
are systems like quasicrystals or amorphous systems which are intrinsically non-periodic.
Furthermore, fundamental effects like the quantized Hall effect cannot be explained without the
assumption of localized states, i.e., aperiodicity is no longer a perturbation of a perfect system.
In [4, 5] a theory is developed extending concepts, like the Brillouin zone, for homogeneous
but not necessarily periodic systems. For a crystal the Brillouin zone is topologically a torus
and the physical observables belong to the algebra of continuous functions over the Brillouin
zone tensored by the compact operators. Obviously, the topological nature of the Brillioun
zone is induced by the atomic positions. In the general case the atomic positions give rise to a
non-commutative C∗-algebra A [7] which is the generalization of the algebra of continuous
functions over the Brillouin zone. However, there is no underlying topological space. One
result of this theory is given by the gap labelling theorem. It identifies the possible values
of the integrated density of states on a gap with the trace of the corresponding projection in
A. With the projections in A one constructs the K0-group of A. We are interested in a better
understanding of its role for quasicrystals.

In section 2 we discuss the properties of a point set describing a quasicrystal and define
strongly repetitive Delone sets. We use a topology on the set of point sets induced by a metric
measuring the agreement of the point sets at the origin. Then the hull of a point set is defined as
the dynamical system given by the orbit closure of the point set under the action of translations.
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For the relation between the hull of a point set and the hull of a homogeneous system we refer
to [7].

Due to the Poincaré construction, we have in one dimension a canonical way to pass from
a continuous dynamical system to a discrete one, and vice versa. For a dynamical system
(�, τ,Rd ) we can also construct a Poincaré section, but the return points are in general no
longer induced by a group action. For hulls of quasicrystals we construct in section 3 a Poincaré
section such that the return points are induced by a Zd -action. Further we give a topological
characterization of such hulls.

In section 4 we investigate strongly repetitive Delone sets in one dimension and
characterize them by the K-groups (with additional structure) of their hulls. This result relies
on the recent work by Giordano et al [15].

2. Quasicrystals and Delone sets

The geometric properties of a condensed matter system are given by the atomic positions. In
the infinite volume limit we assume that the set of atomic positions T ⊂ Rd is a Delone set,
i.e. the set T fulfils

(1) r1 = inf{|x − y|, x, y ∈ T } > 0,
(2) r2 = sup{s ∈ R+, T ∩ Bs(x) = ∅ for x ∈ Rd} <∞,

where Bs(x) = {y ∈ Rd |, ‖x − y‖ < s}. We write T + x instead of τx(T ), where τ is the
canonical action of Rd induced by the translations.

We call T repetitive iff for every s > 0 there is an t > 0 such that every pattern of T
contained in a ball of radius s appears in every pattern of T covering a ball of radius t . In other
words every bounded pattern in T reoccurs in a relative dense way.

This concept of aperiodic order has been introduced in the context of quasicrystals by
Danzer [10] and in the context of incommensurate structures by Aubry [2]. A periodic point set
is uniquely determined, up to translation, by the occurring bounded patterns. This is in general
not true for a repetitive Delone set (r-Delone set), i.e., there exist r-Delone sets consisting of
the same bounded patterns which are not the same up to some translation. Actually, we will
need a stronger condition on the distribution of bounded patterns in a r-Delone set.

Let T be an r-Delone set in Rd . We call T strongly repetitive (or a strong r-Delone set)
iff for every s > 0 there exists a monotonically decreasing function ds ∈ C0(R+) such that for
every pattern M satisfying ∅ = M ⊂ T ∩ Bs(x) for some x ∈ Rd there exists a cM > 0 with∣∣∣∣cM − #{y ∈ Bl(0)|M + y ⊂ T }

volBl(0)

∣∣∣∣ � ds(l) (1)

for all l > s. Then cM is the frequency of the pattern M in T . The uniform existence of all
cMs is equivalent to the unique ergodicity of the hull defined below [31].

We define a metric on the space of all uniformly discrete point sets, in which two point
patterns are close if they agree on a large ball about the origin. Here we follow the definition
in [1]. Other equivalent metrics and topologies arise from other notions of distance [27–29,31].
In [7] a weaker topology is introduced, which is more appropriate from the physical point of
view.

Let T and S be two uniformly discrete point sets in Rd . Then we define a metric by
d(T ,S) = inf({ε > 0|T + u and S + v agree on B1/ε(0) for some ‖u‖, ‖v‖ < ε} ∪ {1/√2}).
Here ‖ · ‖ is the usual norm on Rd . Then we define �(T ) = {T + x|x ∈ Rd} as the hull of
T and consider in the following the dynamical system (�(T ), τ,Rd). One checks that τ is
continuous.
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Lemma 2.1. Let T be an r-Delone set. Then every S ∈ �(T ) is also an r-Delone set. If T
is strongly repetitive then so is S ∈ �(T )—with the same ds ∈ C0(R+).

Proof. Let S = limn→∞ T + xn. Then the lemma is obtained by direct application of the
definition of the metric and of (strong) repetition. �

A short calculation shows that the pattern frequencies cM are actually constant over the hull.
The following theorem is basically Gottschalk’s theorem.

Theorem 2.2. Let T be a Delone set. Then T is repetitive iff �(T ) is a compact space and
the hull of T is minimal.

Proof. By the definition of the metric above, � is complete. Since T is repetitive, we have
that � is precompact and therefore compact. Further, every S ∈ � is also repetitive containing
the same ‘bounded point pattern’ up to translation and therefore the orbit of S is dense. If �
is compact then S ∈ � has only a finite number of different patterns for each finite size. Since
(�, τ,Rd) is minimal, every S ∈ � contain ‘all bounded patterns’ and they are relatively
dense. �

Actually, every Delone set has a compact hull if we use a weaker topology [7]. Let us remark
that the answer to the question whether there exists a local rule which transforms one quasi-
periodic tiling to another quasi-periodic tiling (like between the kits and darts tiling of Penrose
and the Robinson–Penrose tiling) is related to the property of whether the corresponding
dynamical systems are conjugated or not. Namely, the first one implies the second one and we
believe also vice versa (maybe one needs to exclude some pathological cases).

3. The hull of an r-Delone set

Let T be an r-Delone set and let B be the Bravais module of T (the Z-module generated by
{x − y|x, y ∈ T }). In the following we assume that B has finite rank. This is a reasonable
assumption for quasicrystals from a physical point of view, since T is an idealization of a
finite set of the atomic positions of a ‘quasicrystal’. However, this is not necessarily true for
incommensurate structures.

Under this assumption T can be written as the image under a projection of a subset in a
higher-dimensional lattice. In this way the cut-and-project method comes into play. Its idea is
to construct a specific point set as the image of a subset in a higher dimensional lattice [12,19,20]
(more precisely, to construct in this way tilings of the space). Let us recall the fundamental
ideas of this scheme [3, 30]. It consists, by definition, of spaces and mappings:

Rd π1←−−−− Rd ×G
π2−−−−→ G

∪
L

(2)

where Rd is a real Euclidean space and G some locally compact Abelian group, π1 and π2 are
the projections onto them, and L ⊂ Rd × G is a lattice (L is a discrete subgroup such that
(Rd ×G)/L is compact).

Further π1|L is injective in Rd and π2(L) is dense in G. One calls Rd (respectively G) the
physical (respectively internal) space. We assume that π1 (respectively π2) is the projection
map on the first (respectively second) coordinate of Rd×G. Therefore the setting of a cut-and-
projection scheme is given by the triple (Rd ,G, L).



5870 D J L Herrmann

Remark. Cases where B has infinite rank can be treated by choosing a suitable locally compact
group G [3]. For example, the vertices of the chair tiling [16] form an r-Delone set where B
has infinite rank and can be described in this manner [3].

For a subset A ⊂ G we define a point set �(A) in Rd by

�(A) = {π1(x)|x ∈ L, π2(x) ∈ A}. (3)

A is called the acceptance domain or window of �(A). In the literature [3, 23, 30] �(A) is
called a model set, iff A = int(A) = ∅. A model set has many useful properties, especially
the fact that it is strong repetitive if ∂A ∩ π2(L) = ∅.

We prefer not to impose such a condition directly on the acceptance domain. Therefore, we
introduce another set in the internal space G. Let (Rd ,Rn, L) be a cut-and-project scheme and
T an r-Delone set with T ⊂ π1(L). Then we call PR(T ) = {π2(x); x ∈ L with π1(x) ∈ T }
the projection range of T . We say T is generated by (Rd ,Rn, L) if PR(T ) is compact. For
model sets the projection range agrees with the acceptance domain. However, we remark that
even in the hull of a model set we find r-Delone sets which are not model sets, namely the
singular one. (The projection range is the closure of the atomic surface [21] translated to the
internal space.)

Lemma 3.1. Let T be an r-Delone set generated by a cut-and-project scheme (Rd ,Rn, L) and
� its hull. Then all S ∈ � with S ⊂ π1(L) have the same projection range up to translation.

In the following we construct a covering space for the hull of an r-Delone set and
characterize in this way its topological structure. Let T be an r-Delone set generated by
(Rd ,Rn, L). Let PL be the set of non-empty subsets of L with the topology induced by the
product topology of {0, 1}L when identified in the canonical way. Then the topology of PL is
given by the basis of open sets (A,B) = {N ∈ PL|A ⊂ N and B ∩ N = ∅} with A = ∅ and
B are finite subsets of L. Therefore PL is a locally compact and totally disconnected space
and in itself dense.

Lemma 3.2. Let T be an r-Delone set generated by a cut-and-project scheme (Rd ,Rn, L).
Then P = {N ∈ PL, π1(N) ∈ �(T )} is a locally compact and totally disconnected space and
in itself dense.

Proof. π1 is a continuous map and �(T ) compact so that P is closed and therefore locally
compact and totally disconnected. Suppose N ∈ P is an isolated point, then there exists an
open set (A,B) ⊂ PL with (A,B) ∩ P = {N}. Since π1(N) is repetitive we find g ∈ L such
that N + g ∈ (A,B) ∩ P in contradiction to (A,B) ∩ P = {N}. �

Next, we describe � as a twisted product space of a Cantor set and a Zd -action. The lattice L

induces a canonical action on P × Rd via Sg(N, x) = (N − g, x − π1(g)).

Proposition 3.3. We have the following commuting diagram:

P × Rd h−−−−→ Rn × Rd

�φ

�q

�
h∗−−−−→ Tn × Td

(4)

with continuous maps defined below.

Proof. Let φ(N, x) = π1(N) − x. Then φ is continuous and surjective with φ(N, x) =
φ(N ′, x ′) if and only if there is an element g ∈ L with Sg(N, x) = (N ′, x ′). Therefore we can
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identify � with P ×Rd/L. We fix M ∈ P . Due to lemma 3.1 there exists a unique translation
such that π2(N) + y = π2(M). We define the continuous map h by h(N, x) = (y, x). Next
we define q as the quotient map induced by taking the quotient by L ⊂ Rn × Rd . For S ∈ �

if we choose (N, y) ∈ P ×Rd with φ(N, y) = S and define h∗(S) = q ◦ h(N, y), one easily
verifies that h∗(S) is independent of the choice of (N, y) and h∗ is continuous. �

The map h identifies elements with the same projection range and there exist at least two
different elements with the same projection range if the boundary of their projection ranges
have non-empty intersection with π2(L). For model sets these elements are called singular.

Lemma 3.2 shows that P as a space is topologically the same for all r-Delone sets and
therefore the specific properties of � are determined by the action Sg, g ∈ L. We use this fact
to reduce the continuous dynamical system (�,Rd) to a discrete one.

Theorem 3.4. Let V,W ⊂ Rn ×Rd be such that V ∼= π2(V ) ∼= Rn, V ⊕W = Rn ×Rd and
(V ∩ L)⊕ (W ∩ L) = Lv ⊕ Lw = L. Then we have a commuting diagram

P × Rd qv−−−−→ X × Rd

�φ

�qw

� ∼= X × Rd/∼

(5)

with spaces and continuous maps as defined below.

Proof. Clearly, we have a group action Sg of L on P × Rd . We consider X × Rd =
h−1(V )/Lv × Rd ∼= P × Rd/Lv with h defined in the commuting diagram (4). For every
N ∈ P there exists a unique z ∈ Rd such that h(N, z) ∈ V . We define the map
qv : (M, x) → ([(M, z)]Lv , x − z), which is continuous. Let ∼ be the equivalence relation
induced by P × Rd/L

∼= X × Rd/∼ and let qw be the quotient map. Then qw is obviously
continuous. �

Corollary 3.5. X is a Cantor set and ∼ induces a Zd action ϕ on X, i.e. � is a twisted
product space of a Cantor set with a Zd action. Further the complex K-group Kn(�) is
naturally isomorphic to the K-group Kn+d(A) of C∗-algebras, where A = C(X) × ϕZd or
A = C(�)× Rd .

Proof. Since Lv is a lattice in V and P ∼= h−1(V ) = ⋃
g∈Lv

Sg(A) for some compact set
A ⊂ P , we have that X is a compact, totally disconnected set with no isolated point due to
lemma 3.2. We show for fixed (N, z) with h(N, z) = (y, z) ∈ V that K = {x ∈ Rd; ∃g ∈
L : h ◦ Sg(N, z + x) ∈ V } is a lattice. Let x1, x2 ∈ K . Then there exist g1, g2 ∈ L with
h◦Sgi (N, z+xi) = h(N −gi, z+xi −π1(gi)) = (y−π2(gi), z+xi −π1(gi)) ∈ V (i = 1, 2).
Since h◦Sg1+g2(N, z+x1 +x2) = h(N−g1−g2, z+x1 +x2−π1(g1 +g2))(y−π2(g1 +g2), z+x1 +
x2−π1(g1 +g2)) = (y−π2(g1), z+x1−π1(g1))+(y−π2(g2), z+x2−π1(g2))−(y, z) ∈ V , we
have x1 + x2 ∈ K . Since K is relative dense and Kg = {x ∈ Rd;h ◦ Sg(N, z + x) ∈ V } = {0}
for g ∈ Lv , we have that ∼ induces a Zd action.

For the theory and notation of K-groups we refer the reader to [8]. By Connes’ Thom
isomorphism we have Kn(�) ∼= Kn+d(C(�)×Rd). C(X)× ϕZd is the groupoid C∗-algebra
corresponding to the smooth transversal X for (�,Rd) and therefore C(X)× ϕZd is strongly
Morita equivalent to C(�)× Rd implying the same K-groups. �

We call (X, ϕ,Zd) the Cantor system of the hull (�, τ,Rd) (depending on V and W ). h∗
of theorem 3.4 induces a continuous surjective map ĥ : X→ Tn and one easily sees that ĥ is
a semi-conjugation to (Tn, R1, . . . , Rd), where R1, . . . , Rd is a set of rigid rotation on Tn.
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Remark. Let us consider a Schrödinger operator H with a potential constructed by atomic
potentials located on an r-Delone set T . Then a smooth transversal in �(T ) corresponds to a
specific construction of a tight-binding Hamiltonian for H [7]. The above construction of the
smooth transversal corresponds to an effective Hamiltonian on a subspace of L2(Rd) which is
invariant under a subgroup of translations (a lattice).

4. Denjoy homeomorphisms and one-dimensional model sets

In the context of the gap labelling theorems for one-dimensional discrete Schrödinger operators
with various types of potentials (potentials taking finitely many values, limit periodic potentials
coming from automatic sequences, Kohmoto model and B-S model) the image of the
corresponding K-groups under the trace have been calculated [5, 6]. All these potentials
correspond to specific types of Delone sets (not necessarily r-Delone sets). On the other hand,
in a recent work [15] Cantor systems (X, ϕ,Z), i.e. X is a Cantor set and Z acts minimally on
X, are classified by their K-groups (with additional structure). Our analysis is based on this
work. It turns out that the hulls of strong r-Delone sets are characterized by Denjoy systems
and odometer systems. Denjoy systems correspond to cut-and-project schemes with internal
space R and odometer systems correspond to cut-and-project schemes with internal space a
locally compact group G � R which will be presented elsewhere [18].

Denjoy system. The homeomorphisms of the circle with no periodic orbits are classified by
a set of invariants [11, 17, 22, 24]. We review briefly the setting to fix notation; see also [25],
sections 1–3.

Rotation number. We write the unit circle as T = R/Z = [0, 1]/0∼1 with orientation induced
by R and ϕ an orientation-preserving homeomorphism of T. Then ϕ can be ‘lifted’ to a strictly
increasing continuous function ϕ̃ : R→ R which satisfies ϕ̃(x + 1) = ϕ̃(x) + 1. The lifting is
unique if we impose 0 � ϕ̃(0) < 1. The limit

lim
n→∞

ϕ̃n(x)

n

exists, is independent of x ∈ R and lies in the interval [0, 1]. The rotation number ρ(ϕ) of ϕ is
defined by this limit modulo 1. For example, if ϕ is the rigid rotation Rθ : t → t + θ(mod 1),
then the rotation number is ρ(Rθ) = θ , i.e. the average rotation of a point. The rotation number
ρ(ϕ) is rational if and only if ϕ has a periodic orbit. In particular ρ(ϕ) = 0 if and only if ϕ
has a fixed point. For further properties of the rotation number see [9, 17].

Theorem 4.1. [24,25] Let ϕ be a homeomorphism of the circle T with no periodic orbits, and
let θ = ρ(ϕ) be the irrational rotation number of ϕ. Let x be any point of T. Then the points
xn = ϕn(x) are placed on T in the same order as the points yn = nθ(mod 1), n ∈ Z.

Further there exists a continuous surjective map h : T→ T so that

h ◦ ϕ = Rθ ◦ h (6)

where Rθ(t) = t + θ(mod 1), i.e. (T, ϕ) is semi-conjugated to (T, Rθ ). Moreover h in (6)
is unique up to a rotation. Also, ϕ is uniquely ergodic, i.e., there exists a unique ϕ invariant
probability measure µ on T. In fact µ = dh and so, in particular, µ([a, b]) = h(b) − h(a),
where 0 � a < b < 1.
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A Denjoy homeomorphism is a homeomorphism ϕ of T with no periodic orbits such that
ϕ is not conjugated to a rigid rotation, i.e., ρ(ϕ) = θ is irrational and ϕ is not conjugated to Rθ .
Let µ be the unique invariant measure µ = dh of theorem 4.1 and 3 = support(µ). Then 3

is the only minimal invariant set of (T, ϕ) and 3 is a Cantor set (totally disconnected compact
set with no isolated point). We can write 3 as 3 = T\⋃∞n=1 In, where

⋃∞
n=1 In is a countable

disjoint union of open intervals, the intervals I1, I2, I3, . . . being the components of T\3. The
map h in (6) collapses each interval In = (an, bn) into a single point. We call the countable set
{an, bn|n ∈ N} the accessible points of 3. The accessible points pair naturally two-by-two by
being end-points of disjoint components in 3. Also h is one-to-one on the inaccessible points
3 \ {an, bn|n = 1, 2, . . .}. We set

Q(ϕ) = {h(x)|x accessible point of 3} = {h(In)|n ∈ Z}. (7)

Q(ϕ) is uniquely determined by ϕ up to a rigid rotation. The set Q(ϕ) is countable and
invariant under Rθ . Therefore one can choose x0, x1, x2, . . . ∈ Q(ϕ) with disjoint orbits
On = {Rk

θ (xn)|k ∈ Z} such that

Q(ϕ) =
∐
n∈A

On (8)

where
∐

is the disjoint union and A at most countable. A Denjoy system (3, ϕ) is given by a
Denjoy homeomorphism ϕ̂ restricted to the support of its invariant measure.

Theorem 4.2. [22, 25] Two Denjoy homeomorphisms ϕ1 and ϕ2 are conjugate via an
orientation-preserving homeomorphism if and only ifρ(ϕ1) = ρ(ϕ2) andQ(ϕ1) = Rβ(Q(ϕ2))

for some β ∈ [0, 1).

Theorem 4.3. [25] Let ϕ be a Denjoy homeomorphism with ρ(ϕ) = θ and let 3 be the
unique minimal invariant Cantor set. Let Dϕ be the simple C∗-algebra C(3) × ϕZ with
unique (faithful) normalized trace t̂r. Then K0(Dϕ) =

⊕n(ϕ)

1 Z and K1(Dϕ) = Z. Moreover,
the range of t̂r on the projections in Dϕ is (Z + Zθ + Zγ2 + · · · + Zγn(ϕ))∩ [0, 1]. In particular,
if 1, θ, γ2, . . . , γn(ϕ) are linearly independent over the rational numbers, then

t̂r∗ : K0(Dϕ)→ Z + Zθ + Zγ2 + · · · + Zγn(ϕ) (9)

is an order isomorphism of ordered groups, where Z + Zθ + Zγ2 + · · · + Zγn(ϕ) inherits the
order of R and t̂r∗ is the induced homomorphism.

The proofs consist of solving Pimsner–Voiculesco six-terms exact sequences obtained from
the short exact sequences; we refer to the recent work by Putnam et al [25] for details.

Let T = �(A) be generated by the cut-and-project scheme (R,R, L) with an acceptance
domain A = ∪nk=0[ak, bk] and ∂A ∩ π2(L) = ∅. T is a generic model set and therefore a
strong r-Delone set. We may assume that L is a square lattice, since π1(L) is only relevant for
�.

Theorem 4.4. Let (X, ϕ) be the Cantor system of �(T ) in corollary 3.5 with V = Re1 and
W = Re2 and e1, e2 a basis of L. Then (X, ϕ,Z) is conjugated to a Denjoy system (3,ψ)

with rotation number ρ(ψ) = π1(e1)/π1(e2) and Q(ψ) given below.

Proof. Let ĥ : X → V mod Ze1
∼= T be the continuous map induced by h of theorem 3.3.

Then ĥ is a semi-conjugation of (X, ϕ) with (T, Rθ ) with θ = π1(e1)/π1(e2) and is injective
on T \Q(ψ), with Q(ψ) = {h∗(S)|∂PR(S) ∩ π2(L) = ∅} since h∗ identifies exactly those
elements which have the same projection range. More precisely h∗ identifies two elements on
h−1
∗ (Q(ψ)) corresponding to the right and left limit. Hence X ∼= T \⋃s

k=1

⋃∞
n=1 I

s
n and ϕ

induces a conjugated Denjoy homeomorphism on T in the obvious way. �
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Remark. Since h∗ identifies precisely the singular model set pairs (the two model sets in such
a pair differ only on a finite region, since the boundary of the acceptance domain is finite) in
the transversal X, the dimension of the K0-group is given by the number of singular r-Delone
set pairs orbits and the order structure of the K0-group is given by the distance in the internal
space.

Now we consider the general situation for an r-Delone set in one dimension. For dynamical
systems there exist, beside topological conjugacy, other types of equivalence relations.

Orbit equivalence. Two dynamical systems (X1, ϕ1) and (X2, ϕ2) are (topologically) orbit
equivalent if there exists a homeomorphism F : X1 → X2 such that F(orbitϕ1(x)) =
orbitϕ2(F (x)) for all x ∈ X1. We call F an orbit map. For every point x ∈ X1 there
exists an integer n(x) such that F ◦ ϕ1(x) = ϕ

n(x)
2 ◦ F(x). Likewise, there exists an integer

m(x) such that F ◦ ϕm(x)
1 (x) = ϕ2 ◦ F(x). If (X1, ϕ1) (and hence (X2, ϕ2)) is minimal it is

easily seen that m and n are uniquely defined integer-valued functions on X1. We call m and
n the orbit co-cycles associated to the orbit map F . One easily verifies that orbit equivalence
is an equivalence relation.

Strong orbit equivalence. Two dynamical systems (X1, ϕ1) and (X2, ϕ2) are strongly orbit
equivalent if there exists an orbit map F : X1 → X2 such that the orbit co-cycles n and m

associated to F have at most one point of discontinuity. Due to theorem 2.1 in [15] we know
that strong orbit equivalence is an equivalence relation.

For a Cantor system (X, ϕ), i.e. X is a Cantor set and Z acts minimal on X, in [15] these
equivalence relations are related to the ordered K-theory of C∗(X, ϕ). We use these results to
obtain a characterization of a strong r-Delone set.

Theorem 4.5. Let T be a strong r-Delone set in R. Then Y = {S ∈ �(T ), 0 ∈ S} is a smooth
transversal of (�(T ), τ,R). Let ϕ be the first return map for Y . Then (Y, ϕ) is orbit equivalent
to a Denjoy system or an odometer system.

Corollary 4.6. Let T be a strong r-Delone set in R coming from a cut-and-project scheme
(R,Rn, L) and (X, ϕ) is the Cantor system of corollary 3.5. Then (X, ϕ) is orbit equivalent
to a Denjoy system.

Proof. (Theorem 4.5) Let S ∈ �(T ). Then inf{d(S,S ′),S ′ ∈ Y } > inf{||x||, x ∈ S} and
therefore Y is closed and hence compact. Since T is repetitive we have that the topology of Y
is generated by a set of open and closed bases (hence Y is totally disconnected) and (�, τ,R)

is minimal by theorem 2.2 and so (Y, φ) is also minimal. Therefore (Y, φ) is a Cantor system.
We show that for every f ∈ C(Y ) the sequence 1/N

∑N−1
k=0 f ◦ ϕ converges uniformly

on Y to a constant. Let ε > 0 and a ∈ Y . We define χε
a (x) = 1 if d(x, a) < ε and χε

a (x) = 0
elsewhere. Then χε

a (x) ∈ C(Y ) and all such χε
a form a dense subalgebra in C(Y ). By

theorem 2.1 x ∈ Y is strongly repetitive and therefore there exists a function ds ∈ C0(R) and
c > 0 such that |1/N ∑N−1

k=0 χε
a (x)◦ϕ(x)−c| � d1/ε(Nr1). Therefore 1/N

∑N−1
k=0 χε

a (x)◦ϕ→
c uniformly in x. The functions χε

a are dense in C(Y ) and therefore every f ∈ C(Y ) converges
uniformly to a constant. This limit defines a linear functional L on C(Y ) and therefore a ϕ-
invariant measure µ ∈ Mϕ(Y ). Since {x ∈ Y | limN→∞ 1/N

∑N−1
k=0 f (x) ◦ ϕ = ∫

f dµ} = Y

there exists no other ϕ-invariant measure, i.e. (Y, ϕ) is uniquely ergodic.
By corollary 2 of [15] every uniquely ergodic Cantor system is either orbit equivalent to

a Denjoy system or an odometer system. �
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Proof. (Corollary 4.6) Analogously to theorem 4.5 we obtain that (X, ϕ) is either orbit
equivalent to a Denjoy system or an odometer system. Since C∗(X, ϕ) contains a subalgebra
isomorphic to a rotation algebra Aα with irrational α, again by corollary 2 of [15] it cannot be
an odometer system. �

Remark. We believe that theorem 4.5 does not depend on the particular form of the chosen
smooth transversal. Consider, for example, the smooth transversals given by Ys = {S ∈
�(T ),S ∪ Bs(0) = T ∪ Bs(0)} for large enough s > 0. Then theorem 4.5 holds also.

5. Examples

The following examples show how theorem 4.5 can be used to establish (strong) orbit
equivalence between hulls of different r-Delone sets.

Every Delone set in one dimension can be described by a (two- sided) infinite word with
letters indicating the distance between two consecutive points (with possibly infinite number
of different letters). On the other hand, a (two-sided) infinite word defines, up to translation,
a Delone set if we assign to each letter a distance (if the alphabet is infinite the distances must
have a strict positive upper and lower bound). Every primitive substitution rule on a finite
alphabet defines a (two-sided) infinite word. The corresponding Delone set is strong repetitive
and there is a natural choice for the assigned distance to each letter such that the substitution
induces a self-similarity. For a more detailed description and discussion, refer to [6, 21, 26].

One of the most studied substitution sequences is the Fibonacci sequence. It is a
substitution σF on two letters A and B with

σF (A) = AB and σF (B) = A. (10)

The substitution matrix encodes the number of letters A and B in the words σF (A) and σF (B)

respectively:

M =
(

1 1
1 0

)
.

However, the order of the letters in which they occur is not encoded. The sequence
An = σ 2n

F (A), σ 2n
F (A) converges towards an infinite sequence w, such that σF (w) = w,

where ‘,’ denotes the zero point (we take the square of σF , since otherwise we end up with
an oscillation between two words). Now we assign to w an infinite sequence of points in a
two-dimensional lattice L (for a substitution on n letters we would consider an n-dimensional
lattice). Let {e1, e2} be a basis of L. Then we define x0 = 0 and the kth point xk so that the
vector difference

lk = xk+1 − xk

is chosen according to lk = e1 (respectively lk = e2) if the kth letter of w is A (respectively
B). We have therefore

xk = mA(k)e1 + mB(k)e2

where the integers mA(k) and mB(k) are, respectively, the numbers of letters A and B among
the first k letters of the sequence w. We obtain an infinite staircase-shaped broken line if we
connect xk with xk+1, drawn on the lattice, which escapes to infinity along the mean direction
of the vector

v = lim
k→∞

xk

k
= ρAe1 + ρBe2 (11)
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where ρA (respectively ρB) is the frequency ofA (respectivelyB) inw, which can be calculated
from the substitution matrix M . In this way the cut-and-project formalism (R,R, L) comes
into play. The physical space is spanned by v in (11). Then the acceptance domain is given
by [π2(e1), π2(e2)[ and the r-Delone set is given by �([π2(e1), π2(e2)[) = π1({xk, k ∈ Z}).

The first example considers a substitution sequence with the same substitution matrix as
the square of the Fibonacci substitution, but the order of the letters are interchanged:

σ(A) = AAB and σ(B) = BA. (12)

Again the sequence An = σ 2n(A), σ 2n(A) converges towards an infinite sequence w, such that
σF (w) = w. The word defines an r-Delone set T in the same way as above. Let us remark
that T has a fractal atomic surface and the Fourier amplitudes have a different behaviour than
in the Fibonacci case [21, figure 7].

Let us consider the Cantor system (Xσ , ϕσ ) corresponding to the hull of T (corollary 3.5).
Following [6] we calculate t̂r∗K0(C

∗(Xσ , ϕσ )) = Z+τZ+τ/2 Z, where τ is the golden mean.
Therefore (Xσ , ϕσ ) is not orbit equivalent to the hull of the Fibonacci sequence. However,
(Xσ , ϕσ ) is orbit equivalent to the Denjoy system (3, ϕ) with Q(ϕ) = {(Z + τZ) mod 1} ∪
{τ/2 + (Z + τZ) mod 1}. In addition, we obtain that the dimension of K0(C

∗(Xσ , ϕσ )) is
three using the self-similarity induced by the substitution [1] and therefore K0(C

∗(Xσ , ϕσ )

has no infinitesimal element. So the two systems are strong orbit equivalent [15] which is
equivalent to C∗(Xσ , ϕσ )

∼= C∗(3, ϕ). The Denjoy system (3, ϕ) can be interpreted as the
Cantor system of two coupled Fibonacci sequences. Therefore (ordered) K-theory establishes
relations between physically different systems and the question arises of which other physical
properties agree, except for the possible values of the integrated densities of states on the gaps.

Now we compare strong orbit equivalent Denjoy systems. Let 0 < γ0, . . . , γn < 1 be
rationally independent, then (G,G+, 1)withG = Z+Zγ0+· · ·+Zγn ⊂ R andG+ = G∩R+ is a
simple dimension group. Let (3k, ϕk) be the Denjoy system with rotation number ρ(ϕk) = γk
and invariant Q(ϕk) =

⋃
l =k{γl + (Z + Zγk) mod 1}. Due to theorem 4.3 the K0-group

of C∗(3k, ϕk) is (G,G+, 1). Furthermore, the Denjoy systems (3k, ϕk) are pairwise non-
conjugate. By theorem 2.2 in [15] they are all strong orbit equivalent and therefore all
C∗(3k, ϕk) are isomorphic. According to theorem 4.4, we can interpret each Denjoy system
as the Cantor system of a hull (�(T ), τ,R) where T is an r-Delone set generated by a cut-and-
project scheme withγk = π1(e1)/π1(e2) and acceptance domainA =⋃n

l=0[π2(e2), π2(e1)[+xl
with xk = 0 and xl = γl otherwise. Physically, we can interpret T as n + 1-coupled r-Delone
sets, each of them corresponding to one interval. The generators of the K0-group have two
different origins. One generator ‘measures the average translation in internal space’ and the
other ‘measures the distances’ between orbits of different pairs of singular r-Delone sets.

Let T = �(A) be generated by the cut-and-project scheme (R,Rn, L) with an acceptance
domain A = intA and ∂A∩ π2(L) = ∅. Then T is a strong r-Delone set. Let µ be the unique
ergodic measure on the corresponding Cantor system (X, ϕ). Then every Denjoy system
(3,ψ) with Q(ψ) = {µ(m)|m is clopen set in X} is orbit equivalent to (X, ϕ) (corollary 4.6).

6. Remarks and conclusion

For an r-Delone set generated by the cut-and-project method we obtained a topological
description of the hull. It is given by a torus cut along the orbits of singular r-Delone sets
if we are dealing with model sets with polygonal acceptance domains. We have constructed
a smooth transversal X of the hull (�, τ,Rd) such that the Rd -action reduces to a Zd -action.
Since the corresponding K-groups agree, this is a starting point for the calculation of the K-
groups for r-Delone sets in higher dimensions [13] (during the preparation of this article the
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work of [14] came to our attention).
In one dimension, r-Delone sets are characterized by their ordered K-groups with

distinguished order element. For strong r-Delone sets we obtain new ‘equivalences’ between
hulls of r-Delone sets and relate them to Denjoy systems. Here further work is required to
determine the consequences. For the distinction of different Denjoy systems the order structure
of the K0-group is crucial, therefore we expect that, in general, the additional structure of the
K-groups will be relevant. The K0-groups of systems which are orbit equivalent, but not
strongly orbit equivalent, differ in the infinitesimal subgroup. It would be interesting to find
such a situation and to understand the role of the infinitesimal elements.
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